
Funet2020 IP/MPLS network automation

nog.fi workshop, Tampere 2019-05-17

Antti Ristimäki, CSC/Funet

Background

• Funet backbone network renewal ongoing on all layers

oFiber plant

oOptical transport layer

oIP/MPLS network

• Old IP/MPLS network very sparse, core routers only in 7 PoPs

• In the new network, IP/MPLS network will be the primary service layer

oPE routers in all PoPs

oDedicated wavelengths only for heavy users, most services on top of packet network

• As the number of routers increases, old way of managing them just doesn’t

scale any more

2

Configuration management in the old network

• Mainly configured by hand via CLI

• Specific tooling for different tasks

oPeering filters (as-path, prefix-lists) update and configuration

oMPLS VPN services provisioning

oCommon configuration (loopback filters, prefix-lists etc.) centralized management

• Existing tools include self-made scripts (Perl, Expect, Bash..) and Ansible playbooks. Most

tools only serve some specific purpose

• Daily configuration validation by a self-written script

oAdmins receive a daily error report by mail

oConfiguration clean-up and rewrite a manual job

3

Configuration management in the old network (cont.)

• JunOS apply-groups used to apply common configuration inheritance to relevant

elements

oe.g. customer facing interfaces specific configurations

oBGP attributes for easily steering traffic during maintenance

oetc.

• Ironically, router configurations have been used as a network ”meta-data” or database

and not vice versa

4

Funet2020 automation
Some goals

• Simple provisioning of new routers – in principle anyone in the network team

should be able to do the job

• Consistent configurations across the network

• Standardized services

• Easy provisioning of new customer connections and services – no need to be a CLI

jockey

• Less is more: no unnecessary configuration in routers

• Support for multi-vendor environment with reasonable effort

5

Partial vs. full automation

• Initial idea was to automate ”most” configuration and do the rest by hand

• However, having partially automated and partially manually maintained

configuration is awkward

opossible conflicts between automatically and manually generated configs

ohow to remove elements from the configuration, if the whole configuration (or at least
a given configuration hierarchy) is not replaced?

oif manual config was accepted, the configurations would deteriorate by time

6

 Full automation

• We decided to always re-generate the entire configuration and then overwrite

the entire running config for each router

oas a result, the configuration includes only the elements we want or need

ono need for separate garbage collection

omanual hacks will simply get destroyed

• This is possible as we are building the new network from the scratch – no

configuration is copied from the old network

7

Tool: Ansible and Jinja2 templates

• We have used Ansible for server automation for some years, thus familiar tool

• JunOS has good Ansible support, e.g. in form of existing Ansible modules

• For us, no other realistic choices at this point so we have chosen Ansible also for

router automation

• Router configuration generated from Jinja2 template

• However, we use Ansible for IP/MPLS network primarily only as a template engine

oThe template-generated config could be loaded to routers also with some other tools, if needed

oFor now the config is also loaded to routers with Ansible, as it provides nice routines and error
handling for that no need to re-invent the wheel

8

Data model

• Own data-model, formed by (a lot of)

iteration

• Most variables have a default values in

template and can be overridden in

Ansible variables, when needed

o e.g. interface MTUs

• Use of e.g. OpenConfig data model

would be cool, but in practice:

ono time to learn it

o it still supports only a very limited subset of
features, so own models would be needed
anyway

9

routing_instances:
- name: FUNET-MGMT
import_communities:

- name: MANAGEMENT
accept_prefixes: [FUNET-MANAGEMENT-NETWORKS]

bgp_groups_v4:
- name: FUNET2020-TESTLAB
peer_as: 65032
role: primary
accept_prefixes: [TESTLAB1-SW1]
export_prefixes: [FUNET-MANAGEMENT-NETWORKS]
neighbors:

- address: 192.168.255.1
description: testlab1.ip.funet.fi

interfaces:

- name: xe-0/0/0:3
description: funet2020_testlab-a
units:

- number: 1
description: funet2020_testlab_internet-a
ip_mtu: 9170
ipv4_addresses:

- address: 193.167.244.98/31
ipv6_addresses:
- address: 2001:708:0:f001:0:fe08::2/127

- number: 100
vrf: funet-mgmt
description: funet2020_testlab_mgmt-a
ipv4_addresses:

- address: 192.168.255.0/31

More data model examples

10

- name: FW6-BORDER-IN
terms:

- name: DISCARD-BOGON-SOURCEADDR
from:

source-prefix-list:
- IPV6-BOGONS

then:
- action: count
param: bogon-source

- action: discard
- name: DISCARD-MCAST-SOURCEADDR
from:

source-address:
- ff00::/8

then:
- action: count
param: mcast-source

- action: discard
- name: DISCARD-SPOOFED-SOURCE
from:

source-prefix-list:
- IPV6-FUNET-PA-AGGREGATES
- IPV6-FUNET-PI-PREFIXES

then:
- action: count
param: spoofed-source

- action: discard
- name: ACCEPT-BY-DEFAULT
then:

- action: accept

bgp_groups_v4:

- name: FUNET2020-TESTLAB
peer_as: 65032
role: primary
export: [internet-out]
accept_prefixes: [FUNET2020-TESTLAB]
bfd: yes
neighbors: [{ address: 193.167.244.99, description: testlab1.ip.funet.fi }]

policers:

- name: POLICER-2M
bandwidth_limit: 2m
burst_size: 256k
action: [discard]

Zero Touch Provisioning

• Each PoP is equipped with a serial console server anyway for OOB

access, so we use them also for initial commissioning

• Only a few configuration commands to make a newly installed router

reachable to Ansible, and then the playbook does the rest

• During the initial commissioning the Ansible playbook is run via

”backdoor”

oSSH is tunneled through serial console server to router mgmt interface

oIn Ansible inventory an alternative host is defined so that it knows to use the
OOB access instead of trying in-band SSH

• Remote hands only needed for physical installation

11

[funet2020-core-routers]
espoo1.ip.funet.fi ansible_host=espoo1_re0_fxp0

”Database”

• The entire network configuration is now in YAML files

• Maybe one day the data will be pulled from some real database (e.g.

Service Now)

• Router specific configuration is defined in the given router’s host variables

• Common elements defined in shared vars files

oprefix-lists

o firewall filters and policers

oBGP communities and route-targets

oCustomer AS numbers

• A router configuration is composed from those different data sources

12

Automation as an enabler

• As configuration is fully automated, configuration complexity is no more a relevant factor when

considering which technologies, topologies etc. to use

o e.g. iBGP full-mesh vs. route-reflectors

o MPLS LSP provisioning

• Automation makes it easier to use the routers to their full potential

o Without automation, a lot of things would be too complex or configuration intensive to be deployed for us

o QoS configuration is a good example – more on that later

• Easy to template another tools using the same existing meta-data, for example:

o Nagios configuration automatically generated always when routers are configured always up-to-date with the
production network

o Interface statistics view – links to respective Grafana dashboards

o DoS filter view for our CERT team

13

14

Aggregation switches

• 1/10G connections aggregated and QinQ-tunneled via L2 switches

• Ansible automation is extended also to aggregation switches

o In most cases enough to only define the customer facing port

o SVLAN defined and configured automagically (outer VID calculated by switch port
number)

• QoS is configured at router using the aggregation switch variables within

the router template

o Outer VLAN is shaped to the switch port speed at router interface
 the switch doesn’t need to buffer

o Works magically also for LAG ports, e.g. 2 x 10GE switch port is shaped to 20 Gbit/s at
router

• All this would be too configuration intensive and error-prone to do by hand

15

interfaces:

- name: ge-0/0/0
description: foo

For most cases, this is enough
to configure the switch port
and relevant Q-in-Q tunneling

Customer migrations to new network

• Customer services need to be defined in YAML when migrating to new network

• Mechanical part of converting existing configurations to YAML definitions is the

easy part

oa helper script to reduce manual work, nice especially for prefix-lists and firewall filters

• Existing service standardization/normalization requires a lot of effort

odifferent routing policies etc. especially within VPN instances  normalization needed

o some things might be difficult to generalize

• But, the result really is worth the effort!

oBeautiful, consistent configurations without any junk

oNo more case-by-case or tailor-made solutions

16

Custom configurations and exceptions

• In principle, we now try to avoid any custom or tailored configurations

o Standardized services are much more manageable

• However, in an NREN environment there might emerge needs for some special solutions

• It is also very likely that a service needs to be deployed before it has been incorporated into the

Ansible template

• To overcome this limitation, custom configuration can be added as a normal JunOS configuration

snippet that will be automatically read into the template

• Still, even if custom needs arise, one should do his/her best to find a generalized way of

configuring it and try to incorporate it into the automation template

oCustom snippet is meant only for a temporary solution

17

Things to consider

• Learning curve is initially steep

owrt using Ansible and running playbooks

owrt defining configurations in the new YAML data model

owrt fixing things in the playbook and/or Jinja2 template

• Ansible is only a tool, the admin still MUST know what he/she is doing

• One cannot outsource the responsibility to the Ansible playbook

oRecommended to run in ”check mode” first and validate the diff

• Lack of software developer kind of skills might become a bottleneck

• YAML data model documentation – currently worked around by an example file

• Version control conflicts – e.g. change committed to routers not committed in Git repository

18

facebook.com/CSCfi

twitter.com/CSCfi

youtube.com/CSCfi

linkedin.com/company/csc---it-center-for-science

Kuvat CSC:n arkisto, Adobe Stock ja Thinkstock

github.com/CSCfi

Antti Ristimäki

antti.ristimaki@csc.fi

